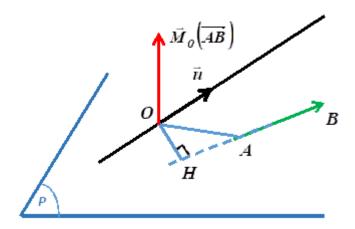
MOMENT DE FORCE, MOMENT CINETIQUE D'UN POINT MATERIEL ET THEOREME DU MOMENT CINETIQUE

1°) Moment d'un vecteur :

a- Moment par rapport à un point



Le Moment de vecteur \overrightarrow{AB} par rapport au point O est le vecteur :

$$\overrightarrow{M}_{O}(\overrightarrow{AB}) = \overrightarrow{OB} \wedge \overrightarrow{AB}$$

Le moment par rapport à O du vecteur \overrightarrow{AB} est un vecteur \bot au plan $(\overrightarrow{OA}, \overrightarrow{AB})$. Il est donc \bot à \overrightarrow{OA} et \overrightarrow{AB} . Son module est donné par :

$$\|\overrightarrow{M}_{O}(\overrightarrow{AB})\| = \|\overrightarrow{OA} \wedge \overrightarrow{AB}\| = \|\overrightarrow{OA}\| \|\overrightarrow{AB}\| |sin(\overrightarrow{OA}, \overrightarrow{AB})|$$

Avec $OH = \|\overrightarrow{OA}\| \sin(\overrightarrow{OA}, \overrightarrow{AB})$ et O un point de la droite Δ du vecteur unitaire directeur \overrightarrow{u} .

b- Moment par rapport à un axe

C'est la projection sur cet axe du moment par rapport à un point quelconque de cet axe.

$$M_{/\Delta}(\overrightarrow{AB}) = Proj_{/\Delta}(\overrightarrow{M}_O(\overrightarrow{AB})) = (\overrightarrow{M}_O(\overrightarrow{AB})) \cdot \overrightarrow{u} = (\overrightarrow{OA} \wedge \overrightarrow{AB}) \cdot \overrightarrow{u}$$

C'est un produit mixte

<u>Attention</u>: Ne pas confondre moment par rapport à un point qui est un vecteur et moment par rapport à un axe qui est un scalaire.

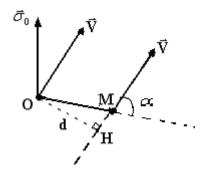
Considérons le vecteur :
$$\overrightarrow{OM} \land \overrightarrow{P} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x & y & z \\ a & b & c \end{vmatrix} = \begin{vmatrix} cy - bz = cy_0 - bz_0 = Cte \\ cx - az = cx_0 - az_0 = Cte \\ bx - ay = bx_0 - ay_0 = Cte \end{vmatrix}$$

Avec \vec{P} est la quantité de mouvement.

Donc le vecteur $\overrightarrow{OM} \wedge \overrightarrow{P}$ noté $\overrightarrow{\sigma}_0$ appelé moment cinétique de M par rapport au point O fixe est un vecteur constant pour un point matériel M isolé.

Le vecteur moment cinétique en un point O d'un point matériel isolé se conserve.

$$\|\vec{\sigma}_{O}\| = m \| \overline{OM} \| \|\vec{V}\| \sin \alpha$$
 $OH = OM \sin \alpha = d$



2°) Généralisation au cas d'un point matériel soumis à une force.

a) Variation de la quantité du mouvement \vec{P} .

La quantité du mouvement est définie par $\vec{P} = m \vec{V}$ et l'accélération par $\vec{\gamma} = \frac{d\vec{V}}{dt}$

D'après le PFD :
$$\vec{F} = m\vec{\gamma} \Rightarrow m\frac{d\vec{v}}{dt} = \frac{d(m\vec{v})}{dt} = \frac{d\vec{P}}{dt}$$
 (m étant la masse)

Théorème de la quantité du mouvement :

"La force est la dérivée par rapport au temps du vecteur quantité du mouvement $\vec{F} = \frac{d\vec{P}}{dt}$ dans un référentiel galiléen".

b) Variation du moment cinétique :

Le moment cinétique en un point fixe O dans le référentiel R, d'un point matériel M de masse m, de vecteur vitesse \vec{V} est :

$$\vec{\sigma}_0 = \overrightarrow{OM} \wedge \vec{P} = \vec{r} \wedge \vec{P}$$

De part sa définition, ce moment cinétique ne dépend que de la composante du vecteur vitesse orthogonal au rayon vecteur \overrightarrow{OM} il traduit un effet de rotation autour du point O.

$$\frac{d\vec{\sigma}_0}{dt} = \frac{d\vec{r}}{dt} \wedge \vec{P} = \vec{r} \wedge \frac{d\vec{P}}{dt} = \vec{r} \wedge \vec{F} = \vec{OM} \wedge \vec{F} = \vec{M}_0(\vec{F})$$

Théorème du moment cinétique :

« La dérivée par rapport au temps du moment cinétique d'un point matériel, en un point fixe O d'un référentiel galiléen est égale à la somme des moments des forces qui s'exercent sur ce point ».

Le théorème reste valable si on, calcule $\vec{\sigma}$ et $\vec{M}(\vec{F})$ par rapport à un autre point fixe A. En effet, si on calcule ce moment on aura :

$$\vec{\sigma}_{A} = \overrightarrow{AM} \wedge \overrightarrow{P} = (\overrightarrow{AO} + \overrightarrow{OM}) \wedge \overrightarrow{P} = \overrightarrow{OM} \wedge \overrightarrow{P} - \overrightarrow{OA} \wedge \overrightarrow{P} = \overrightarrow{\sigma}_{O} - \overrightarrow{OA} \wedge \overrightarrow{P}$$

$$\frac{d\vec{\sigma}_{A}}{dt} = \frac{d\vec{\sigma}_{O}}{dt} - \overrightarrow{OA} \wedge \frac{d\overrightarrow{P}}{dt} = \frac{d\vec{\sigma}_{O}}{dt} - \overrightarrow{OA} \wedge \overrightarrow{F}$$

$$\frac{d\vec{\sigma}_{A}}{dt} = \overrightarrow{M}_{O}(\overrightarrow{F}) - \overrightarrow{OA} \wedge \overrightarrow{F} = \overrightarrow{M}_{A}(\overrightarrow{F}) = \overrightarrow{AM} \wedge \overrightarrow{F}$$

OA = Cte puisque O et A sont fixes.