FORCES NEUTONIENNES

Champ de gravitation- Forces centrales

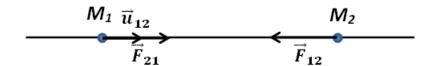
1^{ère} partie

I - Loi de NEWTON

1) Définition

La force de newton représente les interactions entre deux masses supposées ponctuelles. Elle possède les caractéristiques suivantes:

* Elle est **radiale** : dirigée suivant la droite joignant les deux particules M_1 et M_2



* Elle satisfait au principe de l'action et de la réaction :

$$\vec{F}_{12} = -\vec{F}_{21}$$
 Principe des interactions réciproques

* Son intensité est inversement proportionnelle au carré de la distance entre les deux particules : $\left| \vec{F}_{12} \right| = \left| \vec{F}_{21} \right| = \frac{|\textit{Cte}|}{r^2_{12}}$

2) Loi de Newton

Les interactions entre deux masses ponctuelles M_1 ; M_2 représentées par \vec{F}_{12} et \vec{F}_{21}

$$\vec{F}_{12} = -\vec{F}_{21} = -\frac{Gm_1m_2}{r^2_{12}}\vec{u}_{12}$$

G est la constante de gravitation universelle $G = 6.6710^{-11} \text{Nm}^2/\text{kg}^2$

II - Energie potentielle attaché à la loi de Newton :

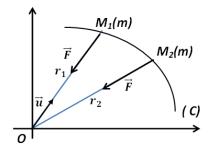
Soit la force \vec{F} de Newton exercée par la masse m_0 placée en O sur la masse m placée en M tel que : $\overrightarrow{OM} = r \vec{u} \implies \vec{F} = -\frac{G m_0 m}{r^2} \vec{u}$ La force de Newton est conservative elle dérive d'un potentiel

$$\begin{array}{c}
 & M(m) \\
 & \tilde{\mathbf{F}} \\
 & \tilde{\mathbf{u}} \\
 & M_0 \\
 & \tilde{\mathbf{U}} \\
\end{array}$$

$$E_P = -\frac{Gm_0m}{r}.$$

$$\vec{F} = -\overline{grad}E_P = -\frac{dE_P}{dr}\vec{u} = -\frac{Gm_0m}{r^2}\vec{u} \Rightarrow E_P = -\frac{Gm_0m}{r} + Cte$$
 et $\vec{F} = Gm_0m\overline{grad}\left(\frac{1}{r}\right)$

Considérons la masse m_1 placée en M_1 à la distance r_1 de O et m_0 fixe en O; en déplaçant la masse m_1 depuis M_1 à M_2 située à la distance r_2 de O.

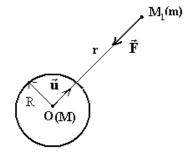


Le travail de la force \vec{F} est : $W = \int_{M_1 M_2} \vec{F} . d\overrightarrow{OM} = -\int \overrightarrow{grad} E_P . d\overrightarrow{OM}$ Or $dE_P = -\overrightarrow{grad} E_P . d\overrightarrow{OM} = \vec{F} . d\vec{r}$ Diminution de l'énergie potentielle

$$\Rightarrow W = -\int_{M_1 M_2} dE_P = E_{P1} - E_{P2} = -\frac{Gm_0 m_1}{r_1} + \frac{Gm_0 m_1}{r_2} = Gm_0 m_1 \left[\frac{1}{r_2} - \frac{1}{r_1} \right]$$

III - Pesanteur terrestre

1) La force d'attraction qu'exerce la terre supposée ponctuelle de masse M sur une masse m placée à la distance r du centre de la terre est : $\vec{F} = -\frac{GmM}{r^2}\vec{u} = m\vec{g}$



L'attraction terrestre est un cas particulier de l'attraction universelle des masses.

2/ L'accélération de la pesanteur g est donnée par : $\vec{g} = -\frac{GM}{r^2}\vec{u}$ avec r la distance du centre de la terre au point matériel $M_1(m)$

*Variation de g avec l'altitude

Au niveau du sol (à la surface de la terre : altitude zéro) l'accélération est : $g_0 = \frac{GM}{R^2}$ Supposons qu'on ait une variation h petite devant .

$$g = g_0 + dg = \frac{GM}{(R+h)^2} = \frac{GM}{R^2 \left(1 + \frac{h}{R}\right)^2}$$

Si
$$h \ll R \Rightarrow \frac{1}{\left(1 + \frac{h}{R}\right)^2} = \left(1 + \frac{h}{R}\right)^{-2} \approx 1 - 2\frac{h}{R} + \cdots$$

$$g = g_0 + dg = g_0 \left(1 - 2\frac{h}{R}\right) \Rightarrow \frac{dg}{g_0} \approx \frac{-2h}{R}$$

g diminue avec l'altitude mais il faut une grande variation d'altitude pour avoir une variation notable de g

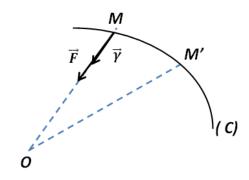
Plus généralement :
$$g = \frac{GM}{r^2}$$
 et $g_0 = \frac{GM}{R^2} \Rightarrow \frac{g}{g_0} = \frac{R^2}{r^2}$

Lorsqu'on on s'élevé au-dessus du niveau du sol la variation de g est inversement proportionnelle à r^2 .

IV - Mouvement à accélération centrale :

1) Définition

On dit que **l'accélération est centrale** lorsque le support du vecteur accélération du mobile M passe constamment par un point fixe appelé centre des accélérations $\Leftrightarrow \overrightarrow{OM} \wedge \overrightarrow{\gamma} = \overrightarrow{0}$ Comme $\overrightarrow{F} = m\overrightarrow{\gamma}$ dans un repère Galiléen, Le rayon vecteur \overrightarrow{OM} et l'accélération $\overrightarrow{\gamma}$ étant constamment collinaires donc on a un mouvement à accélération centrale chaque fois que la force qui agit sur le mobile M passe par un point fixe.



Exemple: Mouvement des planètes et des satellites artificiels, des électrons dans l'atome etc.

2) Propriétés

a- Le moment cinématique est constant

$$\vec{\sigma}_O = \overrightarrow{OM} \land m \overrightarrow{V} \Rightarrow \frac{d\vec{\sigma}_O}{dt} = \overrightarrow{OM} \land m \frac{d\vec{V}}{dt} = \overrightarrow{OM} \land m \vec{\gamma} = \overrightarrow{OM} \land \vec{F} = \overrightarrow{M}_{/O}(\vec{F})$$

$$\vec{\sigma}_O = \overrightarrow{OM} \land m \vec{V} \text{ est un vecteur constant}$$

b- La trajectoire est plane

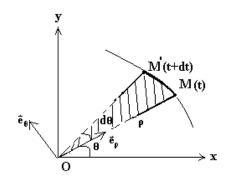
$$\vec{\sigma}_{O} = \overrightarrow{OM} \wedge m\vec{V}$$
 est constant $\Rightarrow \overrightarrow{OM} \wedge \vec{V} = \vec{C} \Rightarrow \vec{C} \perp \overrightarrow{OM} \quad \forall t$

Le vecteur \vec{C} étant constant ; d'après la définition du produit vectoriel, les vecteurs \overrightarrow{OM} et \vec{V} sont constamment dans le plan perpendiculaire en O à \vec{C} par suite ce plan contient la trajectoire et le centre des accélérations $O \Leftrightarrow M$ se déplace constamment dans le plan perpendiculaire en O à \vec{C} : Trajectoire plane

c- Le mouvement s'effectue suivant la loi des aires

En coordonnées polaires : $\overrightarrow{OM} = \rho \vec{e}_{\rho}$ et $\vec{V} = \dot{\rho} \vec{e}_{\rho} + \rho \dot{\theta} \vec{e}_{\theta}$ $\vec{C} = \overrightarrow{OM} \wedge \vec{V} = \rho^2 \dot{\theta} \vec{k}$: Constante des aires.

Examinons l'aires balayé par le rayon vecteur \overrightarrow{OM} entre l'instant t et l'instant t+dt; entre ces deux instants le rayon vecteur passe de \overrightarrow{OM} à $\overrightarrow{OM'}$, en effectuant une rotation d'angle $d\theta$ l'aire hachurée dS est approchée par celle du triangle OMM' dont la mesure est :



$$dS = \frac{1}{2} \left| \overrightarrow{OM} \wedge \overrightarrow{MM'} \right| = \frac{1}{2} \left| \overrightarrow{OM} \wedge d\overrightarrow{OM} \right| = \frac{1}{2} \left| \overrightarrow{OM} \wedge \overrightarrow{V} dt \right| = \frac{1}{2} C dt$$

$$\Rightarrow \frac{dS}{dt} = \frac{C}{2} = \frac{\rho^2 \dot{\theta}}{2} \implies S(t) = \frac{C}{2} t + S_0 = \frac{\rho^2 \dot{\theta}}{2} t + S_0$$

 $S_0 = 0$ si l'axe de référence Ox coïncide avec \overrightarrow{OM} à t = 0.

Si à
$$t = 0$$
, $S(t) = 0 \implies S_0 = -\frac{c}{2} t_0 \implies S(t) = \frac{c}{2} (t - t_0)$

Le rayon vecteur \overrightarrow{OM} balaye des aires égales pendant des intervalles de temps égaux.

1^{ère} Loi de KEPLER :

L'aire balayée par le rayon vecteur \overrightarrow{OM} Croit proportionnellement au temps

C: Constante des aires

 $\frac{C}{2}$: Vitesse aréolaire vitesse de variation de l'aire S ($S_0 = 0$ et Ox coïncidant avec \overrightarrow{OM}_0 à t = 0)

$$S = \frac{c}{2}t$$
: Loi des aires

Théorème démontré à partir de l'hypothèse du mouvement à accélération central. Historiquement, cette relation est une loi qui a été découverte par Kepler à partir de relevés de mesure sans que l'on ait encore soupçonné la notion d'accélérations centrale (1609).

2^{ème} loi de Kepler :

La trajectoire d'un point matériel soumis à une force centrale est une trajectoire plane décrite selon la loi des aires